Theory and Applications of Classical M echanics
Chapter B: Introduction to continuous systems

Introduction to continuous systems

Although all matter is composed of atoms, it is often convenient to
pretend the matter is continuous rather than discrete. We shall discuss
the physical justification for such approximation in subsequent chapters
on fluids and elastic solids. To derive dynamical equations, Lagrangians
and Hamiltonians (together with the apparatus of canonical coordinates
and momenta implicit therein) we mentally subdivide the continuous
system into discrete segments that obey Newton’s laws. Assuming the
appropriate physical quantities may be represented by sufficiently well-
behaved mathematical functions of coordinates and time we use Taylor’s
series to relate infinitesimal quantities of the same order. The resulting
partial differential equations comprise our mathematical model of a
continuous system.

1. The stretched string

We imagine a uniform string

stretched between two fixed sup-
ports. The tension in the string is
T, meaning that that is the force
the string exerts on each support.
In equilibrium, of course, the
string’s curve is a straight line (ne-

glecting gravitation). We replace
this string by a set of discrete

masses, f Y,

Dm = A

where Lis the mass per unit length W"’R\

and A is the spacing between the | ¢ \ " |

nodes where the masses are lo-
cated.

Deviations from equilibrium are described by the instantaneous trans-
verse displacement, ,,(¢) , at the #’th node along the string. We can apply

Newton’s Second Law to the motion of, say, node 7:

. T T
Donlp, = = 7 W = Wnmt + W = Wt [ 7 Wt = 20+ W]
where we have taken the transverse component of the restoring force,
. A
est = —TsIN0 = =T KLEE .
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Transition to the continuum limit
If we imagine () is really a continuous function,

u
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evaluated at the 7’th node, we may expand in Taylor’s series:
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This approximation leads to the equation of motion of a uniform,
continuous, stretched string'

o’y _ 2
A =TA olYns)~ U
HAE 5 rz Y+ Of{ag)’

or, in the limit as AZ — 0,

H ot o

Although it is not possible for the tension T to vary along the string, the
linear mass-density [ can vary, in which case the phase velocity
2_T

u

becomes a function of position. In terms of the phase velocity we rewrite
the string equation in the form

10y _dw_
T
which is manifestly a wave equation. Were the string both uniform and

infinite in extent, the preceding equation would have solutions of the
form

=BT

On a finite string supported at both ends (located at x=0 and x=/) the
solution is subject to the boundary conditions

YO, =w(l,7)=0.
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Lagrangian of a stretched string
The kinetic energy of a system of discrete masses is

1 .
KE = % % M(EAE) T

and the potential energy is

2
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hence the Lagrangian becomes
2
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The integrand is called the Lagrangian density, £ % an’ v, x%
4

Hamiltonian of a stretched string
Returning to the original system of discrete masses we see that the

»

canonical momentum corresponding to the “generalized coordinate
Yy 1s just
Y, = A& H(RAY) Yy

hence the Hamiltonian becomes
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Correspondingly, the integrand is called the Hamiltonian density,

BHTE), W), xH
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Solutions of the wave equation for a string
To determine the possible solutions of the partial differential equation

1%y o'y _
S22 " 270
u” ot 0x
we employ a standard trick: separation of variables. Write
Wix, 2) = T()X ) ,
substitute in the wave equation, and divide by 7(£)X(x) to get
160 _ 0y X6)
(@) X(x)
Since the left-hand side depends on ¢ only, and the right on x only, and

since these two variables are independent, it must be true that they are
both equal to the same constant.

Suppose this constant A were positive: then because the solutions of
X"(x) = M () X (x)

can be either monotonically increasing or decreasing, it will be impossi-

ble for them to vanish at both ends of the string. Hence the boundary

conditions force us to write

T

— W T=0

dr

where & is real and positive. Similarly,
d’X
2 + (,02 uz X=0
dx

where we usually write
Wut(x) =k*(x) > 0.

If & 1s constant (i.e. the string has uniform density), the equation for
X (x) becomes easy to solve according to the boundary conditions
X0)=Xx()=0.
The general solution of
d’X
— S+ X=0
dx
18
X(x) = Asin(kx) + Bcos(kx) ;
from the condition at x=0 we see B=0, and from that at x=[ we see
kl=nm, n=1,2, ...

Thus the possible vibration frequencies are determined to be
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which are immediately seen to have the correct dimensionality,

[w,] =¢""

Rayleigh-Ritz variational principle for eigenvalues
The equation
d>x

dx?

+ u(x)X 0,

subject to boundary conditions, poses an eigenvalue problem akin to
that found in discrete vibrating systems (coupled oscillators). The
Hamiltonian for a particular normal mode of vibration becomes

2

O
ds 5 9 X 720 + 510 120 5 6
x 0 O
averaging over one cycle of the (sinusoidal) osc1llat10n we have

1 QX ) J B
Al pas
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it is easy to see that we can obtain our differential equation for X (x) by

(HO= 5 _|’ dxgtu(x)xz(x)w + =

varying the functional

! i uiX(x, t) D
0 I:l a’x

subject to the constraint

/
I dx J(x) Xz(x) = constant .
0

That is, the frequency plays the role of the Lagrange multiplier. This
leads us to the Rayleigh- Ritz variational principle,
! Dlz’X(x £) D
I dx T O
o < =2 O % D :
_|’ dx p(x) X2(x)

the fact that it is indeed an #pper bound on the squared frequency is
proved in standard texts on mathematical physics.

Let us illustrate: we know the solution for the lowest-frequency mode
of a uniform string is

X{(x) =Asing%g,
[Hig N
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giving the exact lowest frequency (.uﬁ = ﬁ Ziz . The Rayleigh-Ritz bound
may be used to estimate this frequency, since any function that satisfies
the boundary conditions will yield a value larger than the exact one. To

see how good this can be, take a trial function
Xpyigi(x) = (I = x)

and substitute into the upper bound:

_ T 10

i , 4
dx [-2x 3_opeip
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the exact number,
TC = (3.14159265...)%,

is only slightly less than
10 = (3.16227766...)%,
i.e. the Rayleigh-Ritz estimate is pretty good.

2. Sound propagation in gases

In a gas we may normally ignore viscosity and gravity. Euler’s equation,
the equation of mass conservation, and a bit of thermodynamics are all
we need to derive a wave equation for sound.

Imagine the gas has equilibrium pressure p, density p, and zero macro-
scopic velocity . Then we may imagine a sound wave to involve small

excursions from equilibrium &, dpand dv. If we ignore terms of second
or higher order in small quantities, we find

— 000

P o =By
and

20p  — . A

o +pd v=0;

taking the divergence of the first, and the time derivative of the second

equation and eliminating &v between them, we obtain

*  Of course, the molecules move quite rapidly, but randomly, so there is no

overall flow.
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We can go no further without a way to relate dp and dp. Such a relation
follows from an eguation of state—something obtained from knowledge
of the thermodynamics of the gas. Newton assumed that the tempera-
ture remains constant during the fluctuations of density and pressure in
a sound wave. That 1s, he assumed Boyle’s Law,
d @V = 0,

which is easily seen to yield the relation
—p0
p=p %D
PO
In fact, Newton was wrong—the fluctuations are adiabatic (sometimes

called isentropic), meaning no heat flows in or out of the small volumes
we have been considering. Under these conditions,

p=r 0
PO
where yis the ratio of specific heats at constant pressure and volume:
%
Cy '
Then the small excursions are related by

6p=v§6p,
P

which, when substituted into our previous equation, leads to
P8p_0p 0O
> = 2 0%,
o OPQO

from which we identify the speed of sound,

Op 0O
2=yLg.
Op0

u

. 5 . 5 3 7 . .
Sincey = 3 for monoatomic gases (c, = 5 R,cy= 3 R)and 5 for diatomic

7 5 . .
ones (c, = 7 R, cy= > R), the observed speed of sound in air (a mixture

of diatomic gases) is about 20% greater than that predicted by Newton’s
theory. Newton was convinced of the general correctness of his ideas,
and proposed a number of fixes to explain the discrepancy—not very
different from what theorists do today when their numbers are a bit off.
This was by no means equivalent to scientific fraud, however—Broad
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and Wade, in thus accusing Newton of fraud', merely reveal their
ignorance of the distinction between good and fraudulent science.

Lagrangian for sound waves

If we imagine a small displacement (¥, #) of a volume of gas, from its
equilibrium position, we can immediately express the kinetic energy
density as

2
1 . .0
5P (5005
20y
but what shall we take for the potential energy density? The pressure

has the dimensions of energy density, but the pressure at the new

position, pg +{ (%, t)H cannot be right. Physically, we want the average

of the new pressure with the pressure at the point x , giving

2
g
s m,,.0 1 . .
L=[dxDrpg (oD -, BE+ L O+ )
Expanding to leading order in T (x, ) we obtain
2
U U
1 , 1.
L =Ia’3x U-p = C (x, t)% - = { (%, t) MpU+ constant.
02 55 o 2 O
Now, using the adiabatic equation of state and the continuity equation
as previously, we find

Cp =v% Bp

and
2 (Gp+pm ) =0
or ’
or
Bp=-p OHE H
Thus, neglecting surface terms,
. _ . = _ L2
—Id3x (%0 Mp = yp_[d3x {m Hy %—ypj'aﬁx T4 .

Therefore our Lagrangian becomes
2

0 2
1-0 »,. .0 1 -
L :Ia’3x D]—z p %;Z (x, t)g -5 %m (x, ) E

OoQod

*  W. Broad and N. Wade, Betrayers of the truth (Simon and Schuster, New
York, 1982).
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It is worth noting that the equation of motion is

T _ o
967 - Yy D%m 0

so that we find a wave equation in the divergence of the displacement:
. A — -
% - o .

This says that only longitudinal sound waves propagate—transverse
waves would involve the curl of the displacement, which is obviously
independent of position, hence cannot describe a wave.



